
Final Exam — Analysis (WPMA14004)

Thursday 16 June 2016, 9.00h–12.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. Provide clear arguments for all your answers: only answering “yes”, “no”, or “42”
is not sufficient. You may use all theorems and statements in the book, but you
should clearly indicate which of them you are using.

3. The total score for all questions equals 90. If p is the number of marks then the
exam grade is G = 1 + p/10.

Problem 1 (3 + 12 points)

(a) State the Axiom of Completeness.

(b) Assume that the sets A,B ⊂ R are both bounded above. Prove that

sup(A ∪ B) = max{supA, supB}.

Hint: first explain that it suffices to consider only the case supA ≤ supB.

Problem 2 (4 + 4 + 7 points)

Consider the sequences (tk) and (sn) given by

tk =
1

k
− ln

(

k + 1

k

)

and sn = 1 +
1

2
+

1

3
+ · · ·+

1

n
− ln(n+ 1).

Prove the following statements:

(a)

n
∑

k=1

tk = sn for all n ∈ N.

(b) 0 ≤ tk ≤
1

2k2
for all k ∈ N. Hint: x− 1

2
x2 ≤ ln(1 + x) ≤ x for all x ≥ 0.

(c) (sn) is convergent.

Problem 3 (5 + 10 points)

Let B ⊂ R be a set of positive real numbers with the following “finite sum property”:
adding finitely many elements of B gives a sum of 1 or less.

Prove the following statements:

(a) For all ǫ > 0 there exist only finitely many x ∈ B with x > ǫ.

(b) B ∪ {0} is compact.
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Problem 4 (4 + 4 + 7 points)

Consider the following function:

f : R → R, f(x) =
x

1 + |x|
.

Prove the following statements:

(a) f is differentiable at x = 0 and f ′(0) = 1.

(b) f is differentiable at x 6= 0 and 0 < f ′(x) < 1.

(c) f is uniformly continuous on R.

Problem 5 (3 + 6 + 6 points)

Let g : R → R be a function with domain R. Consider the following sequence:

fn(x) =
ng(x)

n+ |g(x)|
.

Prove the following statements:

(a) |fn(x)− g(x)| ≤
g(x)2

n
for all x ∈ R and n ∈ N.

(b) If g is bounded on R, then fn → g uniformly on R.

(c) If g is continuous on R, then fn → g uniformly on all compact subsets of R.

Problem 6 (9 + 6 points)

Consider the modified Dirichlet function h : [0, 1] → R defined by

h(x) =

{

x if x ∈ Q,

0 if x /∈ Q.

(a) Show that U(h, P ) > 1

2
for any partition P of [0, 1].

Hint: prove that xk(xk − xk−1) >
1

2
(xk + xk−1)(xk − xk−1).

(b) Is h integrable on [0, 1]?

End of test (90 points)
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Solution of Problem 1 (3 + 12 points)

(a) Every nonempty set of real numbers that is bounded above has a least upper bound.
(3 points)

(b) Without loss of generality we may assume that supA ≤ supB. Otherwise we just
exchange the names of the sets A and B.

An alternative argument is that the case supB ≤ supA has a similar proof since the
set A and B appear in the formula in a symmetric way (i.e., interchanging the roles
of A and B gives the same formula).
(4 points)

Therefore, we need to prove that sup(A∪B) = supB. To that end, we need to prove
two things:

(i) supB is an upper bound for A ∪ B;

(ii) any other upper bound u of A ∪ B satisfies supB ≤ u or any number smaller
than supB is no longer an upper bound of A ∪ B.

Let x ∈ A ∪B be arbitrary, then either x ∈ A or x ∈ B. Therefore, either x ≤ supA
or x ≤ supB. Since supA ≤ supB it follows that x ≤ supB for all x ∈ A ∪ B. We
conclude that supB is an upper bound for the set A ∪B.
(4 points)

Let u be any upper bound for A ∪ B. Since x ≤ u for all x ∈ A ∪ B it follows in
particular that x ≤ u for all x ∈ B. Since supB is the least upper bound of B it
follows that supB ≤ u which also shows that supB is the least upper bound of A∪B.
(4 points)

Alternative argument. Let ǫ > 0 be arbitrary then there exists an element x ∈ B
such that supB − ǫ < x. This means that supB − ǫ is not an upper bound for B.
Since B ⊂ A ∪B it follows that supB − ǫ cannot be an upper bound for A ∪B. We
conclude that supB is the least upper bound of A ∪ B.
(4 points)
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Solution of Problem 2 (4 + 4 + 7 points)

(a) For all n ∈ N we have

n
∑

k=1

tk =

n
∑

k=1

1

k
+

n
∑

k=1

(ln(k)− ln(k + 1))

=

n
∑

k=1

1

k
+ ln(1)− ln(n+ 1)

=
n

∑

k=1

1

k
− ln(n+ 1) = sn

where we have used the telescoping property of the second sum.
(4 points)

(b) Using the hint with x = 1/k gives

1

k
−

1

2k2
≤ ln

(

1 +
1

k

)

≤
1

k

or, equivalently,

−
1

2k2
≤ ln

(

1 +
1

k

)

−
1

k
≤ 0.

Multiplying these inequalities by −1 gives the desired result.
(4 points)

(c) The series
∑

∞

k=1

1

k2
converges (standard result on infinite series) and therefore

∑

∞

k=1

1

2k2

converges as well.
(3 points)

By the comparison test the series
∑

∞

k=1
tk converges.

(3 points)

Since sn is precisely the n-th partial sum of the series
∑

∞

k=1
tk it follows that the

sequence (sn) converges.
(1 point)
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Solution of Problem 3 (5 + 10 points)

(a) Let ǫ > 0 be arbitrary. If there exist infinitely many x ∈ B such that x > ǫ, then
we can certainly pick N of them with N > 1/ǫ. Hence their sum will be larger than
Nǫ = 1, which contradicts the finite-sum property of B.
(5 points)

(b) Proof using open covers. Let {Oi : i ∈ I} be an open cover for B ∪ {0}. Pick i0 ∈ I
such that 0 ∈ Oi0

. Since Oi0
is open there exists ǫ > 0 such that Vǫ(0) ⊂ Oi0

.
(4 points)

From part (a) it follows that only finitely many points x1, . . . , xn of B are not included
in Vǫ(0). Since {Oi : i ∈ I} covers B∪{0} there exist indices ik ∈ I such that xk ∈ Oik

for k = 1, . . . , n.
(4 points)

We conclude that B ∪ {0} ⊂ Oi0
∪Oi1

∪ · · · ∪Oin. This proves that every open cover
of B ∪ {0} has a finite subcover, and hence proves that B ∪ {0} is a compact set.
(2 points)

Proof via closed and bounded. Applying the definition of the finite-sum property to a
set with one element shows that each x ∈ B satisfies 0 < x < 1. Therefore, B, and
hence B ∪ {0}, is a bounded set.
(4 points)

Note that if x < 0, then x is not a limit point of B. If x ∈ B then part (a) shows
that x is isolated. Hence, the only possible limit point of B is the point x = 0. This
shows that B ∪ {0} = B is closed.
(4 points)

We conclude that B ∪ {0} is a closed and bounded set and hence compact.
(2 points)
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Solution of Problem 4 (4 + 4 + 7 points)

(a) We compute f ′(0) by means of the definition:

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

1

1 + |x|
= 1.

(4 points)

Alternative proof. Note that
∣

∣

∣

∣

f(x)− f(0)

x− 0
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

1

1 + |x|
− 1

∣

∣

∣

∣

=
|x|

1 + |x|
≤ |x|.

Let ǫ > 0 be arbitrary and take δ = ǫ then

0 < |x− 0| < δ ⇒

∣

∣

∣

∣

f(x)− f(0)

x− 0
− 1

∣

∣

∣

∣

< ǫ

which shows that f is differentiable at x = 0 and f ′(0) = 1.
(4 points)

(b) On the interval (0,∞) we have |x| = x, which implies that f is differentiable and the
usual rules from calculus may be applied:

f ′(x) =
(1 + x)− x

(1 + x)2
=

1

(1 + |x|)2
,

which also shows that 0 < f ′(x) < 1.
(2 points)

On the interval (−∞, 0) we have |x| = −x, which implies that f is differentiable and
the usual rules from calculus may be applied:

f ′(x) =
(1− x) + x

(1− x)2
=

1

(1 + |x|)2
,

which also shows that 0 < f ′(x) < 1.
(2 points)

(c) Since f is differentiable on R we may use the Mean Value theorem. Let x < y, then
there exists a point c ∈ (x, y) such that

f(x)− f(y) = f ′(c)(x− y).

(3 points)

Taking absolute values and using parts (a) and (b) gives

|f(x)− f(y)| = |f ′(c)| |x− y| ≤ |x− y|.

(2 points)

Let ǫ > 0 be arbitrary and take δ = ǫ then

|x− y| < δ ⇒ |f(x)− f(y)| < δ = ǫ,

for all x, y ∈ R, which shows that f is uniformly continuous on R.
(2 points)
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Solution of Problem 5 (3 + 6 + 6 points)

(a) For all n ∈ N and x ∈ R we have

|fn(x)− g(x)| =

∣

∣

∣

∣

ng(x)

n + |g(x)|
− g(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

ng(x)

n + |g(x)|
−

(n + |g(x)|)g(x)

n+ |g(x)|

∣

∣

∣

∣

=
|g(x)|2

n+ |g(x)|

≤
|g(x)|2

n
.

(3 points)

(b) If g is bounded, then there exists a constant C > 0 such that |g(x)| ≤ C for all x ∈ R.
Therefore, part (a) implies that

|fn(x)− g(x)| ≤
C2

n
for all x ∈ R and n ∈ N.

(2 points)

Let ǫ > 0 be arbitrary, and pick N ∈ N such that N > C2/ǫ, then

n ≥ N ⇒ |fn(x)− g(x)| ≤
C2

N
< ǫ for all x ∈ R.

We conclude that fn → g uniformly on R.
(4 points)

(c) Now assume that g is continuous on R. If K ⊂ R is compact, then g attains a
maximum and minimum value on K, i.e., there exist a, b ∈ K such that

g(a) ≤ g(x) ≤ g(b) for all x ∈ K.

(3 points)

In particular, it follows that g is bounded on K:

|g(x)| ≤ C = max{|g(a)|, |g(b)|} for all x ∈ K.

(2 points)

By repeating the argument of part (b), with R replaced by K, it follows that fn → g
uniformly on K.
(1 point)
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Problem 6 (9 + 6 points)

(a) Let P be any partition of [0, 1]. Note that the supremum of h over each subinterval
in P is given by

Mk = sup{h(x) : x ∈ [xk−1, xk]} = xk, k = 1, . . . , n.

Therefore, the upper sum of h with respect to P is given by

U(h, P ) =

n
∑

k=1

Mk(xk − xk−1) =

n
∑

k=1

xk(xk − xk−1).

(3 points)

Note that for all k = 1, . . . , n we have

xk > xk−1 ⇒ xk + xk > xk + xk−1 ⇒ xk > 1

2
(xk + xk−1).

(3 points)

Therefore, we obtain the following lower bound for the upper sum:

U(h, P ) >
n

∑

k=1

1

2
(xk + xk−1)(xk − xk−1)

= 1

2

n
∑

k=1

(x2

k
− x2

k−1
)

= 1

2
(x2

n
− x2

0
) = 1

2
.

(3 points)

(b) Let P be any partition of [0, 1]. Note that the infimum of h over each subinterval in
P is given by

mk = inf{h(x) : x ∈ [xk−1, xk]} = 0, k = 1, . . . , n.

Therefore, the lower sum of h with respect to P is given by L(h, P ) = 0.
(3 points)

Combing this result with part (a) shows that for all partitions P of [0, 1] we have

U(h, P )− L(h, P ) > 1

2
.

We conclude that h is not integrable on [0, 1].
(3 points)
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