Final Exam — Analysis (WPMA14004) Thursday 16 June 2016, 9.00h–12.00h University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. Provide clear arguments for all your answers: only answering "yes", "no", or "42" is not sufficient. You may use all theorems and statements in the book, but you should clearly indicate which of them you are using.
- 3. The total score for all questions equals 90. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (3 + 12 points)

- (a) State the Axiom of Completeness.
- (b) Assume that the sets $A, B \subset \mathbb{R}$ are both bounded above. Prove that

 $\sup(A \cup B) = \max\{\sup A, \sup B\}.$

Hint: first explain that it suffices to consider only the case $\sup A \leq \sup B$.

Problem 2 (4 + 4 + 7 points)

Consider the sequences (t_k) and (s_n) given by

$$t_k = \frac{1}{k} - \ln\left(\frac{k+1}{k}\right)$$
 and $s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n+1).$

Prove the following statements:

(a)
$$\sum_{k=1}^{n} t_k = s_n$$
 for all $n \in \mathbb{N}$.
(b) $0 \le t_k \le \frac{1}{2k^2}$ for all $k \in \mathbb{N}$. Hint: $x - \frac{1}{2}x^2 \le \ln(1+x) \le x$ for all $x \ge 0$.

(c) (s_n) is convergent.

Problem 3 (5 + 10 points)

Let $B \subset \mathbb{R}$ be a set of positive real numbers with the following "finite sum property": adding finitely many elements of B gives a sum of 1 or less.

Prove the following statements:

- (a) For all $\epsilon > 0$ there exist only finitely many $x \in B$ with $x > \epsilon$.
- (b) $B \cup \{0\}$ is compact.

Problem 4 (4 + 4 + 7 points)

Consider the following function:

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = \frac{x}{1+|x|}.$$

Prove the following statements:

- (a) f is differentiable at x = 0 and f'(0) = 1.
- (b) f is differentiable at $x \neq 0$ and 0 < f'(x) < 1.
- (c) f is uniformly continuous on \mathbb{R} .

Problem 5 (3 + 6 + 6 points)

Let $g: \mathbb{R} \to \mathbb{R}$ be a function with domain \mathbb{R} . Consider the following sequence:

$$f_n(x) = \frac{ng(x)}{n + |g(x)|}.$$

Prove the following statements:

- (a) $|f_n(x) g(x)| \le \frac{g(x)^2}{n}$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$.
- (b) If g is bounded on \mathbb{R} , then $f_n \to g$ uniformly on \mathbb{R} .
- (c) If g is continuous on \mathbb{R} , then $f_n \to g$ uniformly on all compact subsets of \mathbb{R} .

Problem 6 (9 + 6 points)

Consider the modified Dirichlet function $h: [0,1] \to \mathbb{R}$ defined by

$$h(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

- (a) Show that $U(h, P) > \frac{1}{2}$ for any partition P of [0, 1]. Hint: prove that $x_k(x_k - x_{k-1}) > \frac{1}{2}(x_k + x_{k-1})(x_k - x_{k-1})$.
- (b) Is h integrable on [0, 1]?

End of test (90 points)

Solution of Problem 1 (3 + 12 points)

- (a) Every nonempty set of real numbers that is bounded above has a least upper bound.(3 points)
- (b) Without loss of generality we may assume that $\sup A \leq \sup B$. Otherwise we just exchange the names of the sets A and B.

An alternative argument is that the case $\sup B \leq \sup A$ has a similar proof since the set A and B appear in the formula in a symmetric way (i.e., interchanging the roles of A and B gives the same formula).

(4 points)

Therefore, we need to prove that $\sup(A \cup B) = \sup B$. To that end, we need to prove two things:

- (i) $\sup B$ is an upper bound for $A \cup B$;
- (ii) any other upper bound u of $A \cup B$ satisfies $\sup B \leq u$ or any number smaller than $\sup B$ is no longer an upper bound of $A \cup B$.

Let $x \in A \cup B$ be arbitrary, then either $x \in A$ or $x \in B$. Therefore, either $x \leq \sup A$ or $x \leq \sup B$. Since $\sup A \leq \sup B$ it follows that $x \leq \sup B$ for all $x \in A \cup B$. We conclude that $\sup B$ is an upper bound for the set $A \cup B$. (4 points)

Let u be any upper bound for $A \cup B$. Since $x \leq u$ for all $x \in A \cup B$ it follows in particular that $x \leq u$ for all $x \in B$. Since $\sup B$ is the least upper bound of B it follows that $\sup B \leq u$ which also shows that $\sup B$ is the least upper bound of $A \cup B$. (4 points)

Alternative argument. Let $\epsilon > 0$ be arbitrary then there exists an element $x \in B$ such that $\sup B - \epsilon < x$. This means that $\sup B - \epsilon$ is not an upper bound for B. Since $B \subset A \cup B$ it follows that $\sup B - \epsilon$ cannot be an upper bound for $A \cup B$. We conclude that $\sup B$ is the least upper bound of $A \cup B$. (4 points)

Solution of Problem 2 (4 + 4 + 7 points)

(a) For all $n \in \mathbb{N}$ we have

$$\sum_{k=1}^{n} t_k = \sum_{k=1}^{n} \frac{1}{k} + \sum_{k=1}^{n} (\ln(k) - \ln(k+1))$$
$$= \sum_{k=1}^{n} \frac{1}{k} + \ln(1) - \ln(n+1)$$
$$= \sum_{k=1}^{n} \frac{1}{k} - \ln(n+1) = s_n$$

where we have used the telescoping property of the second sum. (4 points)

(b) Using the hint with x = 1/k gives

$$\frac{1}{k} - \frac{1}{2k^2} \le \ln\left(1 + \frac{1}{k}\right) \le \frac{1}{k}$$

or, equivalently,

$$-\frac{1}{2k^2} \le \ln\left(1+\frac{1}{k}\right) - \frac{1}{k} \le 0.$$

Multiplying these inequalities by -1 gives the desired result. (4 points)

(c) The series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges (standard result on infinite series) and therefore $\sum_{k=1}^{\infty} \frac{1}{2k^2}$ converges as well.

(3 points)

By the comparison test the series $\sum_{k=1}^{\infty} t_k$ converges. (3 points)

Since s_n is precisely the *n*-th partial sum of the series $\sum_{k=1}^{\infty} t_k$ it follows that the sequence (s_n) converges.

(1 point)

Solution of Problem 3 (5 + 10 points)

- (a) Let ε > 0 be arbitrary. If there exist infinitely many x ∈ B such that x > ε, then we can certainly pick N of them with N > 1/ε. Hence their sum will be larger than Nε = 1, which contradicts the finite-sum property of B.
 (5 points)
- (b) Proof using open covers. Let $\{O_i : i \in I\}$ be an open cover for $B \cup \{0\}$. Pick $i_0 \in I$ such that $0 \in O_{i_0}$. Since O_{i_0} is open there exists $\epsilon > 0$ such that $V_{\epsilon}(0) \subset O_{i_0}$. (4 points)

From part (a) it follows that only finitely many points x_1, \ldots, x_n of B are not included in $V_{\epsilon}(0)$. Since $\{O_i : i \in I\}$ covers $B \cup \{0\}$ there exist indices $i_k \in I$ such that $x_k \in O_{i_k}$ for $k = 1, \ldots, n$.

(4 points)

We conclude that $B \cup \{0\} \subset O_{i_0} \cup O_{i_1} \cup \cdots \cup O_{i_n}$. This proves that every open cover of $B \cup \{0\}$ has a finite subcover, and hence proves that $B \cup \{0\}$ is a compact set. (2 points)

Proof via closed and bounded. Applying the definition of the finite-sum property to a set with one element shows that each $x \in B$ satisfies 0 < x < 1. Therefore, B, and hence $B \cup \{0\}$, is a bounded set.

(4 points)

Note that if x < 0, then x is not a limit point of B. If $x \in B$ then part (a) shows that x is isolated. Hence, the only possible limit point of B is the point x = 0. This shows that $B \cup \{0\} = \overline{B}$ is closed.

(4 points)

We conclude that $B \cup \{0\}$ is a closed and bounded set and hence compact. (2 points)

Solution of Problem 4 (4 + 4 + 7 points)

(a) We compute f'(0) by means of the definition:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{1}{1 + |x|} = 1.$$

(4 points)

Alternative proof. Note that

$$\left|\frac{f(x) - f(0)}{x - 0} - 1\right| = \left|\frac{1}{1 + |x|} - 1\right| = \frac{|x|}{1 + |x|} \le |x|.$$

Let $\epsilon > 0$ be arbitrary and take $\delta = \epsilon$ then

$$0 < |x - 0| < \delta \quad \Rightarrow \quad \left| \frac{f(x) - f(0)}{x - 0} - 1 \right| < \epsilon$$

which shows that f is differentiable at x = 0 and f'(0) = 1. (4 points)

(b) On the interval $(0, \infty)$ we have |x| = x, which implies that f is differentiable and the usual rules from calculus may be applied:

$$f'(x) = \frac{(1+x) - x}{(1+x)^2} = \frac{1}{(1+|x|)^2},$$

which also shows that 0 < f'(x) < 1. (2 points)

On the interval $(-\infty, 0)$ we have |x| = -x, which implies that f is differentiable and the usual rules from calculus may be applied:

$$f'(x) = \frac{(1-x)+x}{(1-x)^2} = \frac{1}{(1+|x|)^2},$$

which also shows that 0 < f'(x) < 1. (2 points)

(c) Since f is differentiable on \mathbb{R} we may use the Mean Value theorem. Let x < y, then there exists a point $c \in (x, y)$ such that

$$f(x) - f(y) = f'(c)(x - y).$$

(3 points)

Taking absolute values and using parts (a) and (b) gives

$$|f(x) - f(y)| = |f'(c)| |x - y| \le |x - y|.$$

(2 points)

Let $\epsilon > 0$ be arbitrary and take $\delta = \epsilon$ then

$$|x-y| < \delta \quad \Rightarrow \quad |f(x) - f(y)| < \delta = \epsilon,$$

for all $x, y \in \mathbb{R}$, which shows that f is uniformly continuous on \mathbb{R} . (2 points)

Solution of Problem 5 (3 + 6 + 6 points)

(a) For all $n \in \mathbb{N}$ and $x \in \mathbb{R}$ we have

$$|f_n(x) - g(x)| = \left| \frac{ng(x)}{n + |g(x)|} - g(x) \right|$$
$$= \left| \frac{ng(x)}{n + |g(x)|} - \frac{(n + |g(x)|)g(x)}{n + |g(x)|} \right|$$
$$= \frac{|g(x)|^2}{n + |g(x)|}$$
$$\leq \frac{|g(x)|^2}{n}.$$

(3 points)

(b) If g is bounded, then there exists a constant C > 0 such that $|g(x)| \le C$ for all $x \in \mathbb{R}$. Therefore, part (a) implies that

$$|f_n(x) - g(x)| \le \frac{C^2}{n}$$
 for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$.

(2 points)

Let $\epsilon > 0$ be arbitrary, and pick $N \in \mathbb{N}$ such that $N > C^2/\epsilon$, then

$$n \ge N \quad \Rightarrow \quad |f_n(x) - g(x)| \le \frac{C^2}{N} < \epsilon \quad \text{for all } x \in \mathbb{R}.$$

We conclude that $f_n \to g$ uniformly on \mathbb{R} . (4 points)

(c) Now assume that g is continuous on \mathbb{R} . If $K \subset \mathbb{R}$ is compact, then g attains a maximum and minimum value on K, i.e., there exist $a, b \in K$ such that

$$g(a) \le g(x) \le g(b)$$
 for all $x \in K$.

(3 points)

In particular, it follows that g is bounded on K:

$$|g(x)| \le C = \max\{|g(a)|, |g(b)|\} \quad \text{for all } x \in K.$$

(2 points)

By repeating the argument of part (b), with \mathbb{R} replaced by K, it follows that $f_n \to g$ uniformly on K.

(1 point)

Problem 6 (9 + 6 points)

(a) Let P be any partition of [0, 1]. Note that the supremum of h over each subinterval in P is given by

$$M_k = \sup\{h(x) : x \in [x_{k-1}, x_k]\} = x_k, \qquad k = 1, \dots, n.$$

Therefore, the upper sum of h with respect to P is given by

$$U(h, P) = \sum_{k=1}^{n} M_k(x_k - x_{k-1}) = \sum_{k=1}^{n} x_k(x_k - x_{k-1})$$

(3 points)

Note that for all $k = 1, \ldots, n$ we have

$$x_k > x_{k-1} \Rightarrow x_k + x_k > x_k + x_{k-1} \Rightarrow x_k > \frac{1}{2}(x_k + x_{k-1}).$$

(3 points)

Therefore, we obtain the following lower bound for the upper sum:

$$U(h, P) > \sum_{k=1}^{n} \frac{1}{2} (x_k + x_{k-1}) (x_k - x_{k-1})$$
$$= \frac{1}{2} \sum_{k=1}^{n} (x_k^2 - x_{k-1}^2)$$
$$= \frac{1}{2} (x_n^2 - x_0^2) = \frac{1}{2}.$$

(3 points)

(b) Let P be any partition of [0, 1]. Note that the infimum of h over each subinterval in P is given by

$$m_k = \inf\{h(x) : x \in [x_{k-1}, x_k]\} = 0, \qquad k = 1, \dots, n.$$

Therefore, the lower sum of h with respect to P is given by L(h, P) = 0. (3 points)

Combing this result with part (a) shows that for all partitions P of [0, 1] we have

$$U(h, P) - L(h, P) > \frac{1}{2}.$$

We conclude that h is not integrable on [0, 1]. (3 points)